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Problem Introduction

The Kakeya conjecture is a fundamental problem in geometric measure theory
and harmonic analysis. It concerns the minimal possible size of sets that contain
a unit line segment in every direction in Rn. One way to approach this problem is
through the study of Kakeya maximal function inequalities.
The aim of our project is to find some numerical evidence for the Kakeya maximal
function conjecture in 3 dimensions. This conjecture roughly states that a collec-
tion of tubes in 3-space of equal radii and separated directions is mostly disjoint.
We aimed to find a way to search the parameter space for counterexamples to
test whether 3

2 is the correct exponent on the given bound.
We must test the bound by assigning unique starting positions to each tube care-
fully because we have also shown that a random sampling approach fails be-
cause it cannot achieve the sharpness of the inequality we seek. The sharpness
—or worst-case scenario— usually occurs when many tubes overlap significantly
within a small region, such as when all of them pass through a tiny ball. Due
to the law of large numbers, randomization distributes the tubes more uniformly
than we would like, and because the inequality holds with high probability, we
don’t see the extreme clustering of tubes required to maximize the left-hand side
of the inequality. To methodically place the tubes we first implemented a greedy
algorithm in our code and have since explored various programming approaches.

Inequality Formula

We want to test if the inequality
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is true, for all ϵ > 0, for any δ > 0, for any N ≥ 1, where {T1, . . . , TN} is any finite
set of δ-tubes in R3 with δ-separated directions. The inequality quantifies how
the overlaps of thin tubes in the unit cube are bounded when these tubes point in
δ-separated directions.
Specifically, the inequality states that the total measure of the tubes, calculated by
integrating the sum of their characteristic functions raised to the 3

2 power, cannot
exceed a constant times Nδ2 up to a small loss δ−ϵ. If the tubes were completely
disjoint and entirely within the unit cube, the left-hand side would be approxi-
mately πδ2N , which matches the right-hand side up to a constant factor. Thus,
the inequality suggests that the tubes are "approximately" disjoint in terms of their
contribution to the integral, implying that sets containing lines in every direction
must occupy a substantial volume.

Converted Problem for Computer Testing

It is equivalent to test (1) with δ = 1/n where n is any positive integer. Under this
assumption, an equivalent version of (1) is, for any vectors a1, a2, . . . , aN in R3,
and any δ-separated unit vectors v1, . . . , vN ,
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By discretizing the inequality we represent it as a finite sum over grid points in the
unit cube, making it more accessible for computation and analysis. This discrete
form helps us explore the behavior as N becomes large, allowing us to investigate
specific tube configurations that might challenge the inequality more than random
placements. While random tube arrangements may satisfy the inequality with high
probability, programming enables us to test edge cases and worst-case scenarios,
providing a more rigorous validation of the inequality.

Greedy Algorithm

1. We choose some n (for example: n = 10).Let N = n2 and ϵ = 0.1, using which we
calculate all vℓ,j =

(
vℓ,1, vℓ,2,

√
1− v2ℓ,1 − v2ℓ,2

)
, vℓ,1 =

i
2n, vℓ,2 =

j
2n and, every aℓ of

the form aℓ = (xℓ, yℓ, 0) , 0 ≤ xℓ, yℓ ≤ 1, xℓ, yℓ ∈
{
0, 1n,

2
n, . . . ,

n−1
n , 1

}
2. Starting with a0 = (0, 0, 0), and v0 = (0, 0, 1) we iterate through every aℓ and compute

the left hand side of equation (2) to find the aℓ that maximizes the equation. We achieve
this by iterating through points {0, 1n,

2
n, . . . ,

n−1
n , 1} in the unit cube and computing the

number of tubes that pass through that point.
The greedy algorithm with reasonable parameters always produced the ‘ball example’. The
ball example shows the sharpness of the power, p = 3

2 in equation(2). This can be seen
when we integrate the indicator functions of the tubes from the family T of 1 × δ × δ-tubes
with δ-separated directions over the δ ball to some power p > 1, |T| ∼ δ−2,
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If the Kakeya maxima inequality
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∣∣p ⪅ δ2|T| were true (for all small δ), this
would give δ3−2p ⪅ δ2|T| ≈ 1 and thus p ≤ 3/2, hence sharp at p = 3/2.

Fig. 1: Ball Example

Reinforcement Learning Approach

To improve on the greedy algorithm, we decided to adapt a reinforcement learning approach
based on [2, 4], which was originally developed to find counterexamples to conjectures in
graph theory. The key idea is to optimize over discrete structures using a reward function to
guide a search process, which we were able to adapt for our use case.

1. The search starts with a batch of candidate tube placements, each represented as a
vector of (x, y)-plane intercepts.

2. A sequence of probability distributions over possible actions (i.e. moving a tube) guides
the selection of components for these vectors.

3. After evaluating the reward (LHS of eq. 2) for each solution, the top-performing solu-
tions are used to update the probability distributions via the cross-entropy method.

4. New candidate solutions are generated using the updated distributions, iterating until
the distributions converge, representing an optimal tube placement.

This approach is adaptable to any combinatorial optimization problem, and can be a very
powerful algorithm for solving other math problems[1].
With this new approach, we were able to explore many more possibilities than the greedy
algorithm. However, they all seemed to converge to the same Ball example (Fig. 1). To
find a new example, we modified our RL algorithm to only check tubes which are in SL2
(i.e. can be written in the form ℓ = {(a, b, 0) + t(c, d, 1) : t ∈ R}, for some a, b, c, d ∈ R with
ad− bc = 1). This led us to the SL2 Hairbrush example (Fig. 2).

The SL2 Example

Katz, Wu, and Zahl suggested [3] that, if T is a collection of SL2 tubes, of length
1 and radius δ, with δ-separated directions, then the inequality∫
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might be true with p = 2. There are now a few known counterexamples which
show that the p above must be at most 3/2, one of which is the following “hair-
brush” example, due to Zahl [5].
Given a single SL2-tube T0, the hairbrush example consists of δ−2 many SL2
δ-tubes intersecting T0. The tube T0 is roughly a union of δ−1 many δ-balls,
and each such δ-ball has roughly δ−1 many SL2-tubes passing through it. If T0
is partitioned into segments of length δ1/2, then for each segment, there is a
rectangular prism of side lengths δ1/2 × δ1/2 × δ containing this segment, and
each point in this prism has roughly δ−1 many SL2 tubes passing through it.
This example took some time to be found by hand, but because it happens to
have a reasonably simple description, it was found fairly quickly by the RL pro-
gram we used. In fact, the tube T0 does not need to be SL2 for the example to
work. Therefore, the example found by the program showed that making T0 an
SL2 tube was a redundant assumption.

Fig. 2: SL2 Hairbrush Example

Next Steps

One way to find other examples other than the Ball example would be to consider
the “Minkowski dimension” version of the conjecture rather than the Kakeya max-
imal inequality. We would change the reward function to minimize the volume of
the tubes, rather than maximizing the Lp norm of the sum of their indicator func-
tions. The conjecture is that the volume of a maximal direction separated family
of tubes is ⪆ 1 (where ⪆ allows factors like Cϵδ

−ϵ). In this setting, the ball exam-
ple is not optimal, as it has volume ∼ 1, but (due to the existence of area zero
kakeya sets), we know that there exist collections of δ-tubes with δ-separated
directions whose area can be made arbitrarily small (provided δ is sufficiently
small).
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